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The Elimination of Fast Variables in Complex 
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The kinetics of complex chemical reactions is considered. Different time scales 
exist if one or more of the rate constants of the individual reaction steps is much 
larger than the others. Examples of specific reactions are given in which the 
intermediates vary on the fast time scale. They can be eliminated according to 
a s tandard scheme, the lowest order of which coincides with the steady-state 
approximation usually employed in textbooks on chemical kinetics. 
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Brusselator. 

1. I N T R O D U C T I O N  

Consider the following chemical reaction: 

A + B ~ C  (1) 

This equation states that one mole of substanceA and one mole of 
substance B react together to form one mole of C. It represents the net 
effect of the reaction and is called the stoichiometric equation. 

The reaction rate of (1) will depend on the concentrations of the reac- 
tants A and B and of the product C. If one denotes the concentrations by 
pairs of square brackets, the kinetic law can be written in the following 
way: 

d 
d~ [C] = r{ [A] ,  [B],  [C ] }  (2) 
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The function r is provided by experiment and depends on the mechanism 
of the reaction. 

The mechanism of a reaction indicates how the reactants are trans- 
formed into products. The simplest possible mechanism for (1) is that the 
reaction proceeds by a single step: the formation of C is the result of a 
single collision between the molecules of the reactants A and B. Reactants 
of this kind are called simple. (1) They follow the law of mass action 
(Guldberg and Waage, 1867), which for the case of reaction (1) reads 

d 
d~ [ C ]  = kl-A] [B]  (3) 

The constant k is the familiar rate constant. The powers of the concentra- 
tions in the mass action expression are determined by the stoichiometry of 
the reaction, and therefore one says that the rate of a simple reaction 
follows the stoichiometry. 

Reactions that proceed through a number  of simple reaction steps are 
called complex. 3 Usually such a chain of reactions involves a number of 
intermediates, substances that are produced in an early stage of the 
reaction and consumed at a later stage, and therefore do not show up in 
the stoichiometric equation. It is surprising, however, that the concentra- 
tions of the intermediates do not appear  in the overall reaction rate, 
although they determine the rates of the individual steps. 

In order to derive the overall reaction rate of a complex chemical 
reaction one has to eliminate all intermediates. (61 The standard way to do 
this is based on the "steady-state hypothesis, ''(1'2~ which states that the 
concentrations of the intermediates are stationary. 4 This condition of 
stationarity implies that the concentrations of the intermediates can be 
expressed in terms of the concentrations of reactants and products. 
Consequently they can be eliminated from the overall reaction rate. 

It has been noticed that the steady-state hypothesis is an approxima- 
tion, which is valid if the concentrations of the intermediates are small 
compared to those of reactants and products, and which is only applicable 
after an initial "induction period" during which the intermediates approach 
their stationary values. ~4) Although the steady-state hypothesis under these 
two limitations is basically correct, it has never been incorporated into a 
precise mathematical  approximation scheme. 

In this paper such a scheme will be provided. I will make use of the 
insight that the elimination of intermediates is nothing but an elimination 

3 I am using the terminology of ref. 1, but other terminologies have been used (see ref. 2). 
4 This approach also goes under the name of the Bodenstein method. (61 
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of fast variables. (4/ The state of affairs may be described as follows. The 
reaction constants of the individual steps determine the time scales of the 
different stages of the overall reaction. If one of these reaction constants is 
much larger than the others, it may happen that the overall reaction 
consists of two stages that evolve on different time scales. A fast initial 
stage in which intermediates build up is followed by a slow second stage 
during which the formation of products is set and kept going. The first 
stage may be identified as the induction period, whereas the kinetics of the 
second stage is described by a reduced rate equation of the form (2). 

Rate equations that contain two different time scales have been 
classified by Van Kampen. (4) Complex chemical reactions usually fall 
within the first category of this classification. The first category is charac- 
terized by the existence of a short initial period during which the fast 
variables adjust themselves to the conditions set by the slow variables. (In 
the terminology of Haken ~9) the slow variables enslave the fast ones.) 

In the first part of this paper, I investigate a standard textbook example 
of a complex chemical reaction: the formation of hydrogen bromide. A 
scaling of the intermediate variables is required in order to cast the rate 
equations into the standard form. They are of first category, and it turns 
out that the kinetics is characterized by three different time scales. 

In the second part the importance of higher order calculations is 
demonstrated. It may happen that different plausible reaction mechanisms 
give different results for the overall reaction rate only in higher orders. 

Finally, in the third part an extended version of the Brusselato{ I~ is 
studied. For  this case the intermediates perform sustained oscillations. Fast 
oscillatory behavior belongs to the third categorie in Van Kampen's 
classification. Hence, a different elimination procedure is needed. 

2. T H E  F O R M A T I O N  OF  H Y D R O G E N  B R O M I D E  

The best-known example of a complex chemical reaction is the forma- 
tion of hydrogen bromide, which can be found in almost every textbook on 
chemical kinetics. The stoichiometric equation reads 

H 2 + Br 2 ~ 2HBr (4) 

The kinetic behavior was already studied in 1906. I5) It was found empiri- 
cally that the reaction rate obeys the following law(l~: 

d k t [H2] [Br2]  1/2 
dt [HBr ]  = 1 + k , [HBr]  [Br2] -~ (5) 

822/57/1 2-11 



160 Janssen 

In 1919 the following mechanism was proposed, which is considered to give 
an adequate description of this reaction. The constituting simple reaction 
steps, involving the intermediates H and Br, are given by 

1 

Br 2 + M ~ ' 2Br + M (6) 
2 

3 
Br + H2 ~ _' HBr + H (7) 

4 

H + B r  2 5 ~ HBr + Br (8) 

The letter M in (6) stands for any molecule; bromine may dissociate as a 
result of a collision with M. 

If the concentrations are denoted by [ H 2 ] = x l ,  [ B r 2 ] = x 2 ,  
[ H B r ]  = x3, [ H ]  = x4, [Br]  = xs, and [ M ]  = In, the rate equations read 

d 
tit X1 = k3Xl x5 - k4x3 x4 (9) 

d 
dt X2 = - k l  InN2 + k2Inx2 - - k s x 2 x 4  (10)  

d 
dt x3 = k3xlx5 - k4x3x4 + ksx2x4 (11) 

d 
d t  x4 ~-- k 3 x l  x5 - k4x3x4  - k s x 2 x 4  (12) 

d 
- - -c~ txs=2k lmxz-2k2mx~-k3x lxs+k4x3x4+ksx2x4  (13) 

I have written down all five rate equations, but only three of them are 
independent, as there are two constants, 

C l = 2 X l - - ~ - x 3 + x 4 ,  C2=2x2q -x 3 -~ -x 5  (14) 

Equations (11)-(13) are chosen as the independent ones. The variables x~ 
and x2 may be eliminated by using (14), but I will not do this explicitly. 

Equations (11)-(13) contain all information about  the various rate 
processes that play a role in the complex HBr  reaction. As it is impossible 
to solve these equations exactly, we need an approximation method in 
order to get insight into the kinetics of the reaction. 

An approximate solution may be obtained if one of the reaction con- 
stants ki (i = 1,..., 5) is much larger than the others. Then there will be fast 
and slow variables, and the fast ones may be eliminated. Which of the ki 
will be the largest? The intermediates H and Br are much more reactive 
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than H2, Br2 and HBr. Hence, qualitatively one may expect that a reaction 
step will proceed faster the more intermediates are among the output 
chemicals and the less intermediates (the more stable substances) are 
among the output chemicals. These considerations suggest that the second 
reaction is much faster than the others. So let us put 

k2 /k  I = l/a, e ~ 1 (15) 

Apparently this assumption turns x~ into a fast variable and x 3 and x4 
into slow variables [see (11)-(13)]. There is, however, a complication, 
which may be inferred from (13). If one considers this equation on the fast 
time scale (~ = t/a) and lets a ~ 0, then x 5 evolves according to 

d 
--~ x s =  - 2 k ~ m x  2 (16) 

Hence x5 -~ 0, but only very slowly (power law). In the standard scheme (4i 
it is assumed that the fast variables approach their quasistationary values 
exponentially fast. Hence, the standard scheme cannot be applied to 
Eq. (11)-(13) as they stand. 

However, it is possible to transform (11)-(13) into the standard form. 
One must realize that (16) is only valid for e =  0. For  finite e, (16) only 

applies as long as x5 is of order one. If x5 becomes of order ~,/~, it will no 
longer rapidly decrease, as the rate of change due to the first reaction will 
be of the same order as that due to the second. Similar considerations 
apply to the variable x4 (it will rapidly decrease unless it is of order ,,/~). 
Hence as soon as x4 and x 5 attain values of order ,,/~, a new kinetic regime 
is entered. In order to study this kinetic regime, we perform the following 
scaling: 

X 4 = el/2z1,  X 5 = al/2Zz (17) 

Incidentically, under experimental conditions in which initially only H z and 
Br 2 are present and H and Br are produced during the reaction, this regime 
will be automatically attained. 

In terms of the new variables Zx and z2 the rate equations read 

d 
d / x 3  = ~ l /2 (k3x l  z? -- k 4 x 3 z  1 + k s x z z l )  (18 )  

d 
-~ zl = k 3 x l z z  - knx3Zl - k s x z z l  (19) 

d 2mkl  ( X z _ Z ~ ) _ k g x l z 2 + k 4 x 3 z  I + k s x ~ z l  (20) 
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Now the rate equations are in the standard form. Moreover, they clearly 
display the presence of three time scales in the HBr reaction. The variable 
x3 varies much more slowly than z~ and z2, which will be eliminated 
sucessively in the next section. 

3. SUCESSIVE  E L I M I N A T I O N  OF FAST V A R I A B L E S  

The standard scheme for elimination of fast variables (4) has been 
formulated for two time scales. The generalization to more time scales, 
however, is straightforward: one just reduces the number of time scales step 
by step. 

First we will eliminate the variable that varies most rapidly. For that 
end the following perturbation series is introduced: 

~ 1 / 2  (1)  z2=z~~ z 2 + ... (21) 

According to (14) and (17), this expansion induces two other perturbation 
series, 

X 1 =x]O)'Jg~,l/2x]l)'Jff " ' ' ,  X2=x~O)-~-~,I/2x(1)~ - "'" (22) 

where 

= - ' z ]  n x ~ " ) =  - ' z ~ 2  n n =  1 ,  2 , . .  

The different orders of (21) are determined by substituting (21) and (22) 
into (20) and solving the resulting equation order by order. In lowest order 
one finds 

z(2 ~ (x~~ '/2 (23) 

The first order yields [note (d/dt )z(2~ ,,~e] 

4mkl(x(O))i/2z(xl) (1) (k4x3 + k sx~  ~ zl  (24) = 2 m k l X  2 - k  3 x]~176 1/2 + 

One obtains reduced rate equations by substituting (23) and (24) into (18) 
and (19) 

d 
d5 x3 = el /2Ek3xl  ( x ~ O ) ) l / 2  - -  k 4 X 3 Z l  ~- k s x 2 z l ]  + ek3x l  Z ~ I )  "J - ' ' '  

d 
d t  Z1 = k3xl(x(2~ -- (k4x3 + k sx2 )  z l  + ~ l / 2 k 3 X l z ~ l ) +  ' ' '  

(25) 

(26) 

One must bear in mind that x I and x2 contain different orders according 
to (22). Only two time scales remain in (25) and (26), and as Zl varies 
faster than x3, the elimination procedure can now be repeated. 
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In order to eliminate zl, put 

Z 1 ~--" z]O) -} - ~ l /2z~l )  ~- " ' "  (27) 

Substitute (27) in (26) and apply (22). The zeroth-order terms yield 

z~ ~ -- k3x(~176 t~2 , (k4x3 +ksx~ ~ (28) 

For the first order one has 

(k4x3+k5x~O))z] l )_b_ ,.(1)(~.(o)~l/2_t_b ...(o),(1) 1 d 
- - ' ~ 3 ~ 1  t ' ~ 2  ] " ' ~ 3 " ~ 1  x"2 N~ dt  z ]~  " (29) 

If one uses the results (28) and (29) in (25), one obtains the rate equation 
that describes the slow production of HBr; 

d 
dt x3 = 2el/2k3 btv5"~ lV(~176176 t-a'2 ! (k4x 3 q_ k5x(O)) 1 

-t- 8 k 3 x ] O ) z ( I ) ~  - ~ ( k 5 x ( 2  0 ) -  k 4 x 3 )  z ]  1) 

_ 1 ~(k3 -t- ks)(x(2~ 1/2 z~ ~  1 ek3x~O) (30) 

The lowest order coincides with the empirical law (5), and one obtains the 
familiar expressions (x) 

kt = 2 k 3 ( k l / k 2 )  1/2, ki = k 4 / k 5  (31) 

By a small calculation the first-order correction of (30) can be found 
explicitly. From (24) and (29) it follows that 

z(21)= 4~ (32) 

Z ] I )  _ __ 1 k3x~O)(k4x3 .ff ksx(2O))--2 [k4x 3 -k- (k 5 q- 2k3) x(z ~ 

1 2 (0 )  (0 )  q_2k3ksx  1 x2 (k4x3q_ksx~O)) 4 

x [2k4x]~ + 2ks(x~2~ 2 -4- k4x]~ q- (4k4 - ks) "~~176 (33) ~ l  ~ 2  J 

One can pursue the calculations to higher orders, but after the first order 
they become very cumbersome. 

What about the validity of (30)? It is clear that (30) only applies if 
both fast variables have attained their quasistationary values (23) and (28). 
There is an initial period in time during which the concentrations of inter- 
mediates H and Br build up, and (30) does not apply. This is the induction 
period. Its structure follows from (20) and (26). There are two stages: first 
z2 approaches the value (23) in a time of order x/~, and subsequently z~ 
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tends to the value (28) in a time of order one. As the time during which an 
appreciable amount  of HBr is produced is of the order 1/x/e, the induction 
period is relatively small. 

4. THE REACTION BETWEEN NITRIC OXIDE A N D  H Y D R O G E N  

In order to derive the overall rate of a complex chemical reaction one 
needs a reaction mechanism, which consists of a chain of simple reaction 
steps. It may happen that there exists more than one plausible reaction 
scheme that reproduces the correct overall reaction rate (in lower order). 
In this case higher order corrections become important,  as they may help 
to distinguish among the different mechanisms. 

In order to illustrate this point, we consider the following reaction: 

2NO + 2H 2 ~ N 2 + 2 H 2 0  (34) 

The reaction rate was found to be (7) 

d 
dt [ H 2 0 ]  = 2 k [ N O ]  2 [H2]  (35) 

There are two mechanisms, involving, respectively, the intermediates H 202 
and N 2 0  , through which the reaction may proceed/8) Both mechanisms 
consist of two steps, the initiation of the intermediate followed by a rapid 
termination. 

The first mechanism reads: 

2NO + H 2 

H202  if- H 2 

1 > N 2 + H 2 0 2  (36) 

2 ) 2 H 2 0  (37) 

[ N O ] = x l ,  [ H 2 ] = x 2 ,  [ N z ] = X 3 ,  Denote the concentrations by 
[ H 2 0 ]  = x4 and EH202]  = x 5. Only two of these variables are independ- 
ent, say x4 and x 5. The others can be expressed in terms of them, 

Xx = C l - x 4 - 2 x s ,  

The rate equations read 

X 2 ~ C  2 - -  x 4 - -  x 5 ,  x 3  = C3_~_ 1 ~ x 4 + x  5 (38) 

d 
xs = kl x~x2 - k 2 x 2 x 5  (40) 

It is understood that xl and x 2 are given by (38). 

d 
- ~ X  4 = 2k2x2x5 (39) 
a t  
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Assume now that the second step (37) proceeds much faster than the 
first; k2/kl  = l/e, e < 1. It is possible to introduce the slow variable x4 + 2x5 
and subsequently eliminate the fast variable xs. I prefer, however, to 
perform the scaling x 5 = ez, which also brings the rate equations into the 
standard form 

d 
dt x4 = 2klXzZ (41) 

d 1 
= "- k l  x2 (x~  - z)  (42) Z Z b~ 

The fast variable z is expanded as z = z(~ ezI~)+ ..-. According to (38), 
this induces the following series: 

X 1 =X]0)-~-ex~l)-~ "-" (X] n)= --2Z ( ' - ' t ,  n~> 1) 

x 2 = x ~ ~  . . .  (x~"~= - z  ~'+1', n > l )  

The first three orders of (42) yield 

z/~ (x~~ 2, z~l~= 0, Z (2 )=  (4X]~ 4 (43)  

Hence, for the reduced rate equation one gets 

d 
dt x4 = 2kl ~2~'(0){~'(0)]2~,'~" 1 ) - -  882klX(2~176 --4e2kl(x]~ 6 .  + "'" (44) 

In zeroth order one thus recovers the empirical law (35). 
There is a second mechanism that reproduces (35). The reaction steps 

a re  

2 N O  + H 2 3 ) N 2 O  q- H 2 0  (45) 

N 2 0  q_ H2 4 , N 2 -}- H 2 0  (46) 

The concentration of the intermediate N 2 0  is denoted by x6, and the rate 
equations are 

d 
Z x4 -= k3x~x2 q- k4x2x6 (47)  

d 
X6 = k 3 x ~ x 2  -- k4x2x6 (48)  
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The dependent variables x I and A72 obey 

X 1 = D l - - X 4 - - x 6 ,  x 2  --- D 2  - x 4 (49) 

Assume that reaction (46) is much faster than (45); k 4 / k  3 = 6, 6 ~ 1. The 
scaling x6 = 6z  transforms the rate equation into 

d 
-g x4 = k3(x~x2 + x2z) (50) 

d 1 2 
~ Z =-~ k3x2 (x  1 -- Z) ( 5 1 )  

Performing the standard computations, one obtains for the reduced rate 
equation 

d 
d t  x4  = 2k3(x]~ 2 + 4 6 k 3 x z ( x ] ~  3 + . . .  (52) 

Again the zeroth order coincides with (35). 
As the correction terms in (44) and (52) differ, the question of which 

mechanism is actually realized can be answered by carefully measuring the 
deviations from (35). 

5. T H E  E X T E N D E D  B R U S S E L A T O R  

Intermediates may perform sustained oscillations. This kind of 
behavior occurs if at the level of the rate equations a limit cycle exists. If 
the period of the limit cycle is much smaller than the time on which other 
chemical transformations take place, the intermediates are fast variables 
and may be eliminated. However, the elimination procedure is different 
from the one that was employed in the former examples. I will use an 
extended version of the well-known Brusselator (1~ to illustrate the state of 
affairs. 

The chain of reactions for the Brusselator is given by 

A 1 , X (53) 

2 
B + X  , Y + D  (54) 

2 X + Y  3 , 3X  (55) 

X 4 , E (56) 

The net effect of the Brusselator is that the input chemicals A and B are 
transformed into the products D and E. In the standard treatment of the 
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Brusselator one assumes that the concentrations of A and B are maintained 
constant. For  a certain range of values of the rate constants it can then be 
shown that X and Y perform stable oscillations along a limit cycle. (11) 

Here, however, we are interested in the situation that A and B are not 
held constant but are depleted according to (53) and (54). It will be 
assumed that the amount  of A and B consumed during one period of 
oscillation is very small. The aim is to derive an equation that describes the 
slow decrease of A and B after many oscillations. 

Let us denote the concentrations of the chemicals by [ A ] = x ~ ,  
[B]  = x2, [X]  = x3, and [YI  = x4. The rate equations may then be written 
as  

d 
- ~  X 1 =  - k l x  1 (57)  

d 
~ x 2  = - k 2 x 2 x  3 (58) 

d 
d t  x3  = k l  x l  - -  k 2 x 2 x 3  q- k3  x 2 x 4  - k4x3 (59) 

d 
d l  x 4  = k 2 x 2 x 3  - k 3 x 2 x 4  (60) 

If one puts 

k l  = go~k2 ' k3 = (fi/g)2 k2 ' k 4 = ~k: (61) 

with e ~ 1, and introduces the scaled variables Zx and z 2 according to 

X3 = (g/j~)l/2 Z1 ' X4 = (~/fi)1/2 Z2 (62) 

the rate equations transform into (furthermore absorb a factor k 2 in the 
time scale; see ref. 18) 

d 
xl = - e ~ x l  (63) 

d 
d t  x2 = - -ef t  1x2z I (64) 

d 
7 x l  = O~flXl - -  gZ1 -~- Z2Z2 - -  X2X1 (65) 

d 
dt  x2 = x 2 z l  - z~z2 (66) 
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These are the rate equations of the extended Brusselator. They clearly 
exhibit that the input chemicals A and B are only slowly depleted. For 
e = 0, Xl and x2 are constant and one recovers the ordinary Brusselator. 

6. E L I M I N A T I O N  OF FAST OSCILLAT IONS 

The rate equations (63) (66) designate Zl, z2 and xl ,  x2 as fast and 
slow variables, respectively. How does one eliminate the fast variables and 
derive reduced equations for the slow ones? 

Let us first study (65) and (66) for constant xl and x2 (e=0).  There 
is one stationary point given by 

z l=~x, ,  z2=~ lx l l x  2 (67) 

A limit cycle exists if the stationary point is unstable. The condition of 
instability is given by x2 > ~ + ~2x2. In this regime any solution of (65) and 
(66) will first approach the limit cycle and subsequently perform sustained 
oscillations along the limit cycle. The motion perpendicular to the limit 
cycle is of the first category, whereas the oscillatory behavior falls within 
the third category. ~4) This determines the elimination procedure. 

Only the decay of x2 is affected by the motion of z~ and z2. The lowest 
order effect of the limit-cycle oscillations can be found by an averaging 
procedure,(~4.15) 

d 
X 2 = --~/~ lx2~1(Xl, X2) (68) 

~(Xl,  X2) is the time average along the limit cycle. 

Z 2 

Fig. 1. 

sT 

~x~ Zl 

Small and large limit cycle of the Brussetator. 
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The limit cycle of (65) and (66) encircles the unstable stationary point 
(67) (see Fig. 1 ). Hence, for very small limit cycles (x2 ~> ~ +/~2x~) one will 
have ~ = 3 X l ,  and the reduced equation (68) becomes 

d 
-~ x2 = - e x l x 2  (69) 

Large limit cycles appear if x2 ~> e +/~2x~ (large instability of stationary 
point). It turns out that ~ can be determined in this limit. (18) For that end 
one has to calculate the limit cycle in full detail, which can be done by a 
standard procedure. 

Surprisingly, the result coincides with the small-limit-cycle expression: 
z ~ = f l X l .  Hence, (68) also applies for large limit cycles. This result, 
however, is merely a peculiarity of the Brusselator; one can show that it 
does not hold for other models. 
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